Contents

Spring Batch简介

1.概述

在本教程中,我们将看一个实用的、以代码为中心的 Spring Batch 介绍。Spring Batch 是一个处理框架,专为作业的稳健执行而设计。 它的当前版本 4.3 支持 Spring 5 和 Java 8。它还适应 JSR-352,这是用于批处理的新 Java 规范。 这里 是该框架的一些有趣且实用的用例。

2. 工作流程基础

Spring Batch 遵循传统的批处理架构,其中作业存储库执行调度和与作业交互的工作。 一个作业可以有多个步骤。每个步骤通常遵循读取数据、处理数据和写入数据的顺序。

当然,这里的框架将为我们完成大部分繁重的工作——尤其是在处理作业的低级持久性工作时——使用sqlite作为作业存储库。

2.1. 示例用例

我们将在这里处理的简单用例是将一些金融交易数据从 CSV 迁移到 XML。 输入文件的结构非常简单。 它包含每行的交易,由用户名、用户 ID、交易日期和金额组成:

username, userid, transaction_date, transaction_amount
devendra, 1234, 31/10/2015, 10000
john, 2134, 3/12/2015, 12321
robin, 2134, 2/02/2015, 23411

3. Maven POM

本项目需要的依赖有spring core、spring batch和sqlite jdbc connector:

        <!-- SQLite database driver -->
        <dependency>
            <groupId>org.xerial</groupId>
            <artifactId>sqlite-jdbc</artifactId>
            <version>3.15.1</version>
        </dependency>
        <dependency>
            <groupId>org.springframework</groupId>
            <artifactId>spring-oxm</artifactId>
            <version>5.3.0</version>
        </dependency>
        <dependency>
            <groupId>org.springframework</groupId>
            <artifactId>spring-jdbc</artifactId>
            <version>5.3.0</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.batch</groupId>
            <artifactId>spring-batch-core</artifactId>
            <version>4.3.0</version>
        </dependency>

4. Spring批处理配置

我们要做的第一件事是使用 XML 配置 Spring Batch:

    <!-- connect to SQLite database -->
    <bean id="dataSource"
      class="org.springframework.jdbc.datasource.DriverManagerDataSource">
        <property name="driverClassName" value="org.sqlite.JDBC" />
        <property name="url" value="jdbc:sqlite:repository.sqlite" />
        <property name="username" value="" />
        <property name="password" value="" />
    </bean>
    <!-- create job-meta tables automatically -->
    <jdbc:initialize-database data-source="dataSource">
        <jdbc:script
          location="org/springframework/batch/core/schema-drop-sqlite.sql" />
        <jdbc:script location="org/springframework/batch/core/schema-sqlite.sql" />
    </jdbc:initialize-database>
    <!-- stored job-meta in memory -->
    <!-- 
    <bean id="jobRepository" 
      class="org.springframework.batch.core.repository.support.MapJobRepositoryFactoryBean"> 
        <property name="transactionManager" ref="transactionManager" />
    </bean> 
    -->
    <!-- stored job-meta in database -->
    <bean id="jobRepository"
      class="org.springframework.batch.core.repository.support.JobRepositoryFactoryBean">
        <property name="dataSource" ref="dataSource" />
        <property name="transactionManager" ref="transactionManager" />
        <property name="databaseType" value="sqlite" />
    </bean>
    <bean id="transactionManager" class=
      "org.springframework.batch.support.transaction.ResourcelessTransactionManager" />
    <bean id="jobLauncher"
      class="org.springframework.batch.core.launch.support.SimpleJobLauncher">
        <property name="jobRepository" ref="jobRepository" />
    </bean>

当然,也可以使用 Java 配置:

@Configuration
@EnableBatchProcessing
public class SpringConfig {
    @Value("org/springframework/batch/core/schema-drop-sqlite.sql")
    private Resource dropReopsitoryTables;
    @Value("org/springframework/batch/core/schema-sqlite.sql")
    private Resource dataReopsitorySchema;
    @Bean
    public DataSource dataSource() {
        DriverManagerDataSource dataSource = new DriverManagerDataSource();
        dataSource.setDriverClassName("org.sqlite.JDBC");
        dataSource.setUrl("jdbc:sqlite:repository.sqlite");
        return dataSource;
    }
    @Bean
    public DataSourceInitializer dataSourceInitializer(DataSource dataSource)
      throws MalformedURLException {
        ResourceDatabasePopulator databasePopulator = 
          new ResourceDatabasePopulator();
        databasePopulator.addScript(dropReopsitoryTables);
        databasePopulator.addScript(dataReopsitorySchema);
        databasePopulator.setIgnoreFailedDrops(true);
        DataSourceInitializer initializer = new DataSourceInitializer();
        initializer.setDataSource(dataSource);
        initializer.setDatabasePopulator(databasePopulator);
        return initializer;
    }
    private JobRepository getJobRepository() throws Exception {
        JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean();
        factory.setDataSource(dataSource());
        factory.setTransactionManager(getTransactionManager());
        factory.afterPropertiesSet();
        return (JobRepository) factory.getObject();
    }
    private PlatformTransactionManager getTransactionManager() {
        return new ResourcelessTransactionManager();
    }
    public JobLauncher getJobLauncher() throws Exception {
        SimpleJobLauncher jobLauncher = new SimpleJobLauncher();
        jobLauncher.setJobRepository(getJobRepository());
        jobLauncher.afterPropertiesSet();
        return jobLauncher;
    }
}

5. Spring Batch 作业配置

现在让我们为 CSV 到 XML 工作编写工作描述:

    <import resource="spring.xml" />
    <bean id="record" class="com.blogdemo.spring_batch_intro.model.Transaction"></bean>
    <bean id="itemReader"
      class="org.springframework.batch.item.file.FlatFileItemReader">
        <property name="resource" value="input/record.csv" />
        <property name="lineMapper">
            <bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
                <property name="lineTokenizer">
                    <bean class=
                      "org.springframework.batch.item.file.transform.DelimitedLineTokenizer">
                        <property name="names" value="username,userid,transactiondate,amount" />
                    </bean>
                </property>
                <property name="fieldSetMapper">
                    <bean class="com.blogdemo.spring_batch_intro.service.RecordFieldSetMapper" />
                </property>
            </bean>
        </property>
    </bean>
    <bean id="itemProcessor"
      class="com.blogdemo.spring_batch_intro.service.CustomItemProcessor" />
    <bean id="itemWriter"
      class="org.springframework.batch.item.xml.StaxEventItemWriter">
        <property name="resource" value="file:xml/output.xml" />
        <property name="marshaller" ref="recordMarshaller" />
        <property name="rootTagName" value="transactionRecord" />
    </bean>
    <bean id="recordMarshaller" class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
        <property name="classesToBeBound">
            <list>
                <value>com.blogdemo.spring_batch_intro.model.Transaction</value>
            </list>
        </property>
    </bean>
    <batch:job id="firstBatchJob">
        <batch:step id="step1">
            <batch:tasklet>
                <batch:chunk reader="itemReader" writer="itemWriter"
                  processor="itemProcessor" commit-interval="10">
                </batch:chunk>
            </batch:tasklet>
        </batch:step>
    </batch:job>

这是类似的基于 Java 的作业配置:

public class SpringBatchConfig {
    
    @Autowired
    private JobBuilderFactory jobs;
    @Autowired
    private StepBuilderFactory steps;
    @Value("input/record.csv")
    private Resource inputCsv;
    @Value("file:xml/output.xml")
    private Resource outputXml;
    @Bean
    public ItemReader<Transaction> itemReader()
      throws UnexpectedInputException, ParseException {
        FlatFileItemReader<Transaction> reader = new FlatFileItemReader<Transaction>();
        DelimitedLineTokenizer tokenizer = new DelimitedLineTokenizer();
        String[] tokens = { "username", "userid", "transactiondate", "amount" };
        tokenizer.setNames(tokens);
        reader.setResource(inputCsv);
        DefaultLineMapper<Transaction> lineMapper = 
          new DefaultLineMapper<Transaction>();
        lineMapper.setLineTokenizer(tokenizer);
        lineMapper.setFieldSetMapper(new RecordFieldSetMapper());
        reader.setLineMapper(lineMapper);
        return reader;
    }
    @Bean
    public ItemProcessor<Transaction, Transaction> itemProcessor() {
        return new CustomItemProcessor();
    }
    @Bean
    public ItemWriter<Transaction> itemWriter(Marshaller marshaller)
      throws MalformedURLException {
        StaxEventItemWriter<Transaction> itemWriter = 
          new StaxEventItemWriter<Transaction>();
        itemWriter.setMarshaller(marshaller);
        itemWriter.setRootTagName("transactionRecord");
        itemWriter.setResource(outputXml);
        return itemWriter;
    }
    @Bean
    public Marshaller marshaller() {
        Jaxb2Marshaller marshaller = new Jaxb2Marshaller();
        marshaller.setClassesToBeBound(new Class[] { Transaction.class });
        return marshaller;
    }
    @Bean
    protected Step step1(ItemReader<Transaction> reader,
      ItemProcessor<Transaction, Transaction> processor,
      ItemWriter<Transaction> writer) {
        return steps.get("step1").<Transaction, Transaction> chunk(10)
          .reader(reader).processor(processor).writer(writer).build();
    }
    @Bean(name = "firstBatchJob")
    public Job job(@Qualifier("step1") Step step1) {
        return jobs.get("firstBatchJob").start(step1).build();
    }
}

现在我们有了整个配置,让我们分解它并开始讨论它。

5.1. 使用ItemReader读取数据并创建对象

首先,我们配置了cvsFileItemReader,它将从record.csv中读取数据并将其转换为Transaction对象:

@SuppressWarnings("restriction")
@XmlRootElement(name = "transactionRecord")
public class Transaction {
    private String username;
    private int userId;
    private LocalDateTime transactionDate;
    private double amount;
    /* getters and setters for the attributes */
    @Override
    public String toString() {
        return "Transaction [username=" + username + ", userId=" + userId
          + ", transactionDate=" + transactionDate + ", amount=" + amount
          + "]";
    }
}

为此,它使用自定义映射器:

public class RecordFieldSetMapper implements FieldSetMapper<Transaction> {
 
    public Transaction mapFieldSet(FieldSet fieldSet) throws BindException {
        DateTimeFormatter formatter = DateTimeFormatter.ofPattern("d/M/yyy");
        Transaction transaction = new Transaction();
 
        transaction.setUsername(fieldSet.readString("username"));
        transaction.setUserId(fieldSet.readInt(1));
        transaction.setAmount(fieldSet.readDouble(3));
        String dateString = fieldSet.readString(2);
        transaction.setTransactionDate(LocalDate.parse(dateString, formatter).atStartOfDay());
        return transaction;
    }
}

5.2. 使用ItemProcessor处理数据

我们创建了自己的项目处理器CustomItemProcessor。这不会处理与事务对象相关的任何内容。 它所做的只是将来自 reader 的原始对象传递给 writer:

public class CustomItemProcessor implements ItemProcessor<Transaction, Transaction> {
    public Transaction process(Transaction item) {
        return item;
    }
}

5.3. 使用ItemWriter将对象写入 FS

最后,我们将此transaction存储到位于xml/output.xml的 XML 文件中:

<bean id="itemWriter"
  class="org.springframework.batch.item.xml.StaxEventItemWriter">
    <property name="resource" value="file:xml/output.xml" />
    <property name="marshaller" ref="recordMarshaller" />
    <property name="rootTagName" value="transactionRecord" />
</bean>

5.4. 配置批处理作业

因此,我们所要做的就是使用batch:job 语法将这些点与作业连接起来。 注意提交间隔。这是在将批次提交给itemWriter之前要保存在内存中的事务数。 它将在内存中保存事务直到该点(或直到遇到输入数据的结尾):

<batch:job id="firstBatchJob">
    <batch:step id="step1">
        <batch:tasklet>
            <batch:chunk reader="itemReader" writer="itemWriter"
              processor="itemProcessor" commit-interval="10">
            </batch:chunk>
        </batch:tasklet>
    </batch:step>
</batch:job>

5.5. 运行批处理作业

现在让我们设置并运行所有内容:

public class App {
    public static void main(String[] args) {
        // Spring Java config
        AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext();
        context.register(SpringConfig.class);
        context.register(SpringBatchConfig.class);
        context.refresh();
        
        JobLauncher jobLauncher = (JobLauncher) context.getBean("jobLauncher");
        Job job = (Job) context.getBean("firstBatchJob");
        System.out.println("Starting the batch job");
        try {
            JobExecution execution = jobLauncher.run(job, new JobParameters());
            System.out.println("Job Status : " + execution.getStatus());
            System.out.println("Job completed");
        } catch (Exception e) {
            e.printStackTrace();
            System.out.println("Job failed");
        }
    }
}